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ABSTRACT
We investigate different models for detecting and classifying
important geopolitical events in high-frequency spatiotem-
poral network data. Building on previous empirical work
on the network response to real-world events, our goal is to
develop a generative model that can identify the time, loca-
tion, and nature of different emergency and non-emergency
events. As a testbed for these models, we use a large dataset
containing billions of anonymized mobile phone calls and
text messages from Afghanistan, and associated metadata
on several known important geopolitical events. We find
that simple and scalable time-series models of geographi-
cally aggregated call volume can accurately identify the on-
set of major events when the approximate time and location
of the event is known. However, such models ignore the
network structure in the data, and are not well suited to
spatial localization. Preliminary results from dynamic ma-
trix factorization models, which generatively model network
structure, indicate a promising area for future work.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics; J.4 [Computer Applications]: Social and Behavioral
Sciences—Sociology
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1. INTRODUCTION
As mobile phones and other sources of network data prolif-
erate across the globe, there exists the possibility of using
these data to better model and understand the changing
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real-world environment in which the data are generated [7].
In this paper, we investigate the promise of using genera-
tive modeling frameworks to distinguish between emergency
and non-emergency events localized in space and time based
on mobile phone interaction data. An important question,
which is left primarily open, is how to accomplish this task
efficiently at scale.

We perform this analysis using a large mobile phone network
dataset from Afghanistan that contains billions of interper-
sonal communications with spatial and temporal markers.
We calibrate these methods using a handful of important
violent and non-violent geopolitical events. In this context,
for instance, we want to be able to detect a soccer match
based on how the call patterns of the users change, and de-
termine that what occurred was a soccer match rather than a
bombing or an earthquake. This approach builds on recent
empirical work that has shown that different types events
produce heterogeneous responses in such data [3, 10, 5].

Building on these insights, our goal is to develop a gen-
erative model which differentiates between emergency and
non-emergency events. Given a specific temporal and spatial
location for an event, we show that straightforward modifi-
cations to existing time series and network methods recover
sufficient signal to differentiate between events. We use a
Markov switching autoregressive model to evaluate changes
in tower volume and a time-varying latent factor model as
a means of recovering signal from graph data.

Such methods perform well when the spatial and temporal
context are approximately known, but perform poorly ab-
sent a pre-specified context. We contend that the remaining
open modeling challenge is spatiotemporal localization. Spa-
tiotemporal localization here refers to the ability of a method
to differentiate signal from a spatially, temporally, and net-
work dependent noise distribution. In the case of time series
models, for example, localization requires identifying which
cell tower is likely closest to an event from among a series of
towers which have correlated volume profiles. The complex
dependence differentiates the localization problem from so-
called “rare event” models where there is limited signal, but
typically unstructured noise.

Our work relates closely to a series of recent studies that



Figure 1(a): Call volume at the tower nearest a major bombing (left) and a
stadium inauguration (right). Red indicates incoming call volume and blue shows
outgoing call volume from the tower. The dashed lines indicates average volume
for the tower on the same day of the week.

Figure 1(b): Heatmap of (log) call vol-
ume between pairs of 200 towers during
the 30 minutes following a major bomb-
ing. Towers are ordered closest to fur-
thest starting at the bottom left.

have used similar high-frequency network data to explore
the impact of unexpected events on network traffic. In work
closely related to our own, [2] provide a scalable framework
for detecting events when analysis of the full network is pro-
hibitive by focusing more narrowly on activity in subnet-
works and at network hubs. Similarly, by focusing on fea-
tures of the users’ local networks over time, [1] detect events
by pinpointing times resulting in the greatest deviations.
Finally, [5] provide a method that locates an earthquake in
Rwanda based on anomalous call volume at nearby towers,
and assess continuing need in the area by monitoring persis-
tence of deviations in tower traffic. Our work extends these
efforts by seeking a generative model of network activity
that can be used to identify and classify the type, timing,
and location of important events.

The remainder of the paper is organized as follows: Section
2 details the data and the Afghanistan context. Section 3
describes and presents results from the autoregressive model,
and Section 4 develops the matrix factorization approach. In
Section 5 we conclude with an outline for future work.

2. DATA
Our data comes from a large telecommunications operator
in Afghanistan. The full dataset contains detailed infor-
mation on all communication events that occurred on the
nation’s primary mobile phone network in 2011. This cap-
tures billions of calls and text messages made by millions of
subscribers. For each such event, we observe the time and
date of the event, as well as anonymized identifiers for each
party on the transaction. We additionally observe the iden-
tifier of the mobile phone tower that was used to route the
event, which allows us to infer the approximate location of
each subscriber at the time of the call or text message.

Since our goal is to capture events which affect large numbers
of users simultaneously, we initially focus on activity aggre-
gated at the level of the mobile phone tower. Our dataset
includes over 1,000 towers spread across Afghanistan, and
which cover all major population centers.

One event that exemplifies the impact an event can have on
cell phone usage is a major bombing in the capital city of

Kabul on December 6, 2011. The left plot in Figure 1(a)
shows the incoming and outgoing call volume at the tower
nearest the bombing for that day. There is an immediate
spike in the call volume at the time of the bombing, common
to many nearby towers. Notably, the incoming call volume
spikes slightly later and lasts longer than the outgoing call
volume. This is reasonable as there is likely some delay as
people learn about the bombing and call in to check on those
they know were in the area.

In comparison, the right plot in Figure 1(a) provides a sim-
ilar depiction of traffic at the time a new stadium is inaugu-
rated in a nearby region of Kabul. Instead of the quick spike
and return to normal that we see in the bombing, there is
prolonged period of increased activity, similar to that ob-
served by [3] for other non-emergency events.

These descriptive figures focus on changes in call volume at
the single tower closest to the event, and ignore the net-
worked structure in the data. A more natural representa-
tion, and one that we will draw in Sec. 4, treats each tower
as a localized node in a network, and calls between towers as
edges. A simple representation of this time-varying network
is given in Figure 1(b), which shows a 30-minute snapshot
of the call volume between towers following the bombing in
Kabul.

3. TIME SERIES MODELS
We start by considering the differential structure of events
in terms of call volume alone, as in [3]. To examine the
ability of generative models to distinguish between events
given a known context (e.g., time window and location), we
first look at techniques which analyze call volume from the
single closest tower. Let yt be the observed volume at time
t, t ∈ {1, . . . , T}. The goal, then, is to identify the set of
time points which are associated with an event at the tower.
To this end, we consider a straightforward autoregressive
hidden Markov model (AR-HMM):

yt = a(zt)yt−1 + µ(zt) + εt, εt ∼ N(0, σ2(zt)),

Pr(zt = j|zt−1 = i) = πij .

Here, zt is a Markov process indexing the hidden state of the
tower at time t with with πij indicating the probability of



transitioning from state i to state j. This formulation allows
for flexibility in modeling the dynamics of different types of
events. One state may capture the immediate spike caused
by an emergency, while another state captures the slower,
prolonged build associated with a concert or festival.

We take a Bayesian approach and specify priors on this
model. For K hidden states, we have

yt ∼ N(a(zt)yt−1 + µ(zt), σ2(zt)),

πi ∼ Dirichlet(1/K), µ(i) ∼ N(0, σ2
µ),

a(i) ∼ N(0, σ2
a), σ2(i) ∼ Inv-Gamma(a, b).

This sparse Dirichlet formulation allows for a data-driven
adaptive technique that encourages the use of a subset of
the available states. Based on the conjugate prior specifi-
cation, performing inference is straightforward using Gibbs
sampling. In addition, we can sample the entire sequence
z{1:T} using the forward-backward algorithm [9].

To assess performance, we looked at four different events:
two emergency events and two stadium inaugurations. All
the events occurred in different locations. To localize the
data, we use the tower closest to each event. In order to
avoid focusing on daily trends in call volume, the data were
de-trended by subtracting the mean for that time period and
day of week using data from the rest of the month for the
tower. The data were then normalized to have maximum
volume equal to 1. We used diffuse prior settings σ2

µ =
σ2
a = 1, a = 0.1 and b = 0.001 and ran the sampler for

40,000 iterations, discarding the first 20,000 as burn-in. To
examine the inferred states, we looked at the best sample as
determined by joint model probability. To identify events,
we look specifically at the rare states in the sample. This
reflects our expectation that events occur suddenly and are
short-lived. This should result in a jump to a unique ‘event’
state and a quick return to the ‘normal’ or baseline states.

As shown in Figure 2, the three-state model (K = 3) is able
to detect the emergencies as a unique state but does not
have enough other states to adequately capture the variabil-
ity in the baseline noise process. As such, the K = 3 setting
fails to uniquely identify the stadium inaugurations. As we
move from three to five and then to ten states, we see that
the background states are increasingly differentiated from
the inauguration state, with the ten-state model finally hav-
ing enough states to adequately model the baseline noise as
separate from the inaugurations.

Figure 3 compares the ten-state model with a Bayesian change-
point model [4]. The changepoint model partitions a time
series into a set of independent segments, each with its own
mean and variance. These segments are similar to the states
in the AR-HMM model, with the major difference that in
the changepoint formulation, the system can not return to a
previous state. Both models use multiple states to capture
baseline noise, but the changepoint model cannot classify
the two emergencies or non-emergencies as the same type.

Our results indicate that there is indeed signal that can be
modeled generatively to detect the onset of major events.
Clearly, however, the multiple baseline states indicate that
a more sophisticated dynamic model is important for the

task of temporal localization of events, especially as more
and more ‘null’ data (non-event days) are considered. Possi-
bilities include models based on hierarchical HMMs or hid-
den semi-Markov models [8], though both present greater
computational complexity. However, perhaps the greatest
challenge is in spatial localization from the massive number
of tower-specific time series. So far, our AR-HMM has con-
sidered the closest tower only. Assuming a collection of in-
dependent towers does not capture the complex correlation
structure between tower series. Alternatively, the multivari-
ate switching vector autoregressive (VAR) processes fails to
scale to high dimensions (i.e., large numbers of towers) and
likewise does not capture the (potentially non-Euclidean)
spatial diffusion process.

4. NETWORK MODELS
To analyze all towers jointly and take advantage of the net-
work structure of our data, we consider a matrix factoriza-
tion approach. Matrix factorization [6] takes an n×n matrix
X and decomposes it into two smaller n×k matrices U and V
such that X ≈ UV T . In our case, X is the matrix of tower-
tower calls, and Xij is the number of calls from tower i to
tower j. The rows of the U and V matrices can then be seen
as an embedding of the towers into a low-dimensional latent
space, with U and V modeling incoming and outgoing vol-
ume separately. These latent locations give us information
about the similarity of the towers. Importantly, however,
in our application we have a matrix of tower-to-tower call
volume X(t) at each time step t.

As exploratory data analysis to ascertain whether changes
in network structure differ, even at a coarse level, between
event types, we first look at matrix factorization on snap-
shots of the data separately, comparing communication pat-
terns before and after the event. For each of a bombing
and a stadium inauguration, we used a 30-minute snapshot
of tower-to-tower call volume directly before the event as
well as one after the event started. We used k = 5 latent
factors. From the resulting latent positions of the towers,
we computed a distance matrix where the ij’th entry is the
distance between tower i and tower j in the latent space.
We then subtracted the distance in the post-event snapshot
from the distance in the pre-event snapshot to see how the
towers moved relative to each other over this time period.

Figure 4 shows 200 towers with high volume, sorted by dis-
tance from the event. Blue indicates that a pair of towers
is further apart after the bombing than before, and red in-
dicates that they have moved closer. For the bombing, the
most important feature is the blue line along the bottom
margin of the plot, indicating that the towers nearest the
event moved away from the other towers. Also of interest is
the set of towers in the middle of the plot which move away
from the other towers. These towers are near a concurrent
bombing that took place in another city 300 km away from
Kabul. The stadium inauguration looks visually distinct
from the bombing, indicating that a dynamic matrix fac-
torization approach might provide information that can be
used in differentiating between events.

Motivated by our exploratory data analysis, as a first cut at
a model integrating the temporal and network aspects of our
data, we explore a dynamic matrix factorization formulation



Figure 2: Results of the AR-HMM on two emergency events and two non-emergency events. The de-trended call volume is
shown in blue and the actual events are highlighted in yellow (non-emergency) and red (emergency). The bars below show
the inferred event states from the sampler where K varies. Green is the set of baseline states, while yellow and red indicate
the rare states picked during the true non-emergency and emergency events, respectively.

Figure 3: Comparison of AR-HMM (left) and Bayesian changepoint detection (right) on the events of Figure 2. For the
changepoint method, the non-green colored bars show the state at the beginning of each event.

similar to that in [11]. In this formulation, given n × k

matrices U (t) and V (t), we model X(t) via a latent random
walk as

X
(t)
ij |U

(t), V (t) ∼ N(U
(t)
i V

(t)T
j , σ2),

U
(t)
i ∼ N(U

(t−1)
i , σ2

UI), V
(t)
j ∼ N(V

(t−1)
j , σ2

V I),

U
(0)
i ∼ N(0, σ2

0I), V
(0)
j ∼ N(0, σ2

0I).

The coupling of the U (t) and V (t) matrices over succes-
sive time points allows sharing of information about towers
across time. In the absence of significant events, we ex-
pect the locations of towers in the latent space will move
smoothly. Events which have a large impact on towers in
the network will be reflected by larger moves in the latent
space. A Bayesian approach would put priors on the hyper-
parameters σ2, σ2

0 , σ
2
U , σ

2
V .

Our formulation does not explicitly model event-driven dy-
namics as in Sec. 3. Instead, event detection could be a
post-processing step. However, this model affords scalable
inference, which is key given the size of our dataset. In par-
ticular, finding the maximum a posteriori (MAP) estimate

of the matrices {U (t)} and {V (t)} is equivalent to minimizing

T∑
t=1

‖X(t) − U (t)V (t)T ‖2F + λU

T∑
t=1

‖U (t) − U (t−1)‖2F +

λV

T∑
t=1

‖V (t) − V (t−1)‖2F + λ0(‖U (0)‖2F + ‖V (0)‖2F ).

Although this objective is not convex, a local optimum can
be efficiently computed using stochastic gradient descent or
block coordinate descent, with opportunities for paralleliza-
tion making the model highly scalable.

As a test of the dynamic matrix factorization model, we ap-
plied it to the entire network in a time period around the
major bombing as well as to a time period around a stadium
inauguration. We again used k = 5 with λU = λV = λ0 = 10
and ran a block coordinate descent algorithm for 1,000 iter-
ations. To evaluate our results, we looked at how the dis-
tance between the closest tower and other towers changes
over time. For comparison, we also look at the same plot
for a random tower distant from the event. Figure 5 vi-
sualizes the motion of the towers of interest in the latent
space. Here, the green dot indicates the time of the event
of interest. Reflecting the results of the independent matrix
factorization of Figure 4, the closest tower to the bombing
(top left quadrant of Figure 5) does move away from the
other towers quickly at the time of the event, returning to
a closer position relatively quickly. In contrast, there is no
such distinct shift for the distant tower. For the stadium in-
auguration, there is no such significant move for the closest
tower, also keeping with the results of Figure 4. In particu-
lar, the lower margin of the inauguration plot is mostly grey,
interestingly indicating that the nearby towers did not move
significantly in relation to most of the other towers.

Our results indicate that there is indeed signal in our spa-
tiotemporal network data that can be modeled generatively
to distinguish between events. However, as emphasized in



Figure 4: Heatmap showing changes in distance between
towers in the latent space from independent matrix factor-
izations using a 30-minute snapshot of tower-to-tower vol-
ume before and after an event for the bombing (left) and
the stadium inauguration (right). The towers are ordered
by geographic distance to the event with the closest towers
in the lower left.

Figure 5: Dynamic matrix factorization results. Heatmaps
showing distance in the latent space between a selected tower
and other towers across time. The top figures are from the
bombing, and the bottom are from the stadium inaugura-
tion. The green dot indicates the beginning of the event.

Section 3, it is difficult to find a scalable model that can ac-
count for the full course of the data, when neither the time,
location, or type of the event is specified. We believe this
localization problem is again at the heart of the challenge,
and an important open task for the community.

5. CONCLUSION
We use mobile phone interaction data to detect and differen-
tiate between events. When given a general time and loca-
tion, existing generative models effectively differentiate be-
tween emergency and non-emergency events. Performance
deteriorates rapidly without this information. Given these
results, we contend that there are two primary open chal-
lenges in this literature. First, localizing events in time and
space requires modeling a background noise process with
a high degree of spatial, temporal, and network structure.
Information on both time and location of an event was crit-
ical in both the call volume data and network data. Sec-
ond, scaleability remains a substantial open issue. For our
network results the matrix factorization model provides a

scaleable representation of changing structure in the graph.
We could not, however, scaleably incorporate a generative
model which detects and classifies events using existing mod-
els. Scaleable implementations of such models remains an
open area of research.
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