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Abstract

Modern wearable devices are embedded with a range of noninvasive biomarker
sensors that hold promise for improving detection and treatment of disease. One
such sensor is the single-lead electrocardiogram (ECG) which measures electrical
signals in the heart. The benefits of the sheer volume of ECG measurements
with rich longitudinal structure made possible by wearables come at the price of
potentially noisier measurements compared to clinical ECGs, e.g., due to movement.
In this work, we develop a statistical model to simulate a structured noise process
in ECGs derived from a wearable sensor, design a beat-to-beat representation that
is conducive for analyzing variation, and devise a factor analysis-based method
to denoise the ECG. We study synthetic data generated using a realistic ECG
simulator and a structured noise model. At varying levels of signal-to-noise, we
quantitatively measure an upper bound on performance and compare estimates
from linear and non-linear models. Finally, we apply our method to a set of ECGs
collected by wearables in a mobile health study.

1 Introduction

Heart disease is the leading cause of death worldwide, causing over 17.9 million deaths annually
with over 600,000 of those deaths in the United States alone [10, 5]. A major challenge in combating
heart disease is early identification of high risk individuals. Recently, wearable devices have enabled
individuals to passively track biomarkers of health throughout their day-to-day life, as opposed to
sporadically in the clinic. While these devices hold promise for combating heart disease by allowing
for rich longitudinal tracking of biomarkers across large populations of patients, recordings may be
noisier than their clinically recorded counterparts.

Electrocardiograms (ECGs), which measure the electrical activity in the heart, are one such biomarker
for monitoring cardiovascular activity. Clinical ECGs measure the electrical activity across twelve
different spatial views (i.e., leads) of the heart. In addition to standard use, clinical ECGs have been
analyzed with pattern recognition algorithms (e.g., neural networks) to make a variety of predictions,
including arrhythmias [11, 12], measures of heart failure [1], and risk of future adverse events [9].

Some modern wearables, however, measure the electrical activity at two locations to produce a single
lead. In an uncontrolled setting, a single-lead ECG may feature artifacts (e.g., due to movement)
or more noise compared to clinical ECGs — in some extreme cases these artifacts render the ECG
unrecognizable. This noise motivates the need for methods to denoise these ECGs.

We propose a generative model for temporally-structured artifacts in ECGs and a two-step denoising
procedure rooted in factor analysis. Our approach estimates both the temporal structure of perturba-
tions across ECGs, and the per-ECG noise amplitude. In a simulation study, we compare performance
of simple baselines (e.g., sample averages) to more complex nonlinear methods (e.g., variational
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Figure 1: (Left) An example single-lead ECG trace with relatively high noise compared to most
measurements. (Right) The same ECG trace represented with the R-peak aligned for each beat.

autoencoders [6]) at varying signal-to-noise ratios on synthetic data, comparing reconstruction error.
The relative performance of each estimator depends on the signal-to-noise ratio, and our factor analy-
sis approach consistently performs well and is simpler than nonlinear methods. Finally, we apply our
method to a subset of ECG records from the Apple Heart and Movement Study2 to demonstrate its
efficacy and statistical properties.

2 Data Description

Electrocardiograms (ECGs) measure the voltage of the electrical activity of the heart via electrodes
placed on the skin (e.g., on the wrist for some wearables). The cardiac muscle cycles through
depolarization and repolarization events, resulting in a structured temporal signal. Deviations can
indicate cardiac abnormalities or disease. Each heartbeat consists of 3 main components: (1) P
wave: depolarization of the atria, (2) QRS complex: depolarization of the ventricles, and (3) T wave:
repolarization of the ventricles.

The data collected by wearables have additional sources of variation (see Figure 1). There is
heterogeneous noise across samples — where each sample is a full ECG recording — typically due
to the sensitivity of the wearable to movements and non-ideal conditions. Cardiac cycle lengths are
also heterogeneous, due to changes in heart rhythm either or environmental factors such as exercise.
Additionally, noise is temporally correlated across beats within an ECG sample.

2.1 Beat-Aligned Representation

We first segment each ECG sample into a sequence of beats using a wavelet-based algorithm that
delineates the P, QRS, and T waves as proposed in [7]. This delineated representation of the ECG
allows us to compare the variability from beat-to-beat within a single ECG trace by aligning each beat
b 2 f1; : : : ; Bg relative to its position to the R peak, shown in right of Figure 1. For the rest of this
work, we assume that the data are collected at a consistent frequency across all ECG samples allowing
us to deal with vectors instead of functions, though this can be handled via functional versions of our
denoising methods.

3 Model

We propose a structured noise model for beat-aligned ECG observations. Within sample i, we model
the observed beat b as

Xi;b = �i + �i;b ; �i;b � N
(

0;
1

�2i
K
)
; (1)

where Xi;b; �i; �i;b 2 Rd represent the observed ECG beat, denoised ECG beat, and the noise,
respectively. The denoised ECG beat �i represents a per-sample canonical beat; structured beat-to-
beat variation will be considered in future analysis. ECG noise exhibits temporal correlation structure

2http://www.bwhresearch.org/appleheartandmovementstudy/
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Figure 2: Left: The variation of
the ECG beats based on the jit-
tered ODE parameters. Right:
performance of our methods in
the multi-beat setting (B = 20)
with variable noise levels (� �
Unif(2; 20)).

Method MSE
MLE 0.597
Oracle Bayes, Truth 0.0
Factor Analysis, Truth 0.353
Factor Analysis, Estimated 0.362
VAE, Estimated 0.660

with varying levels of amplitude, motivating a shared covariance K, where we set tr(K) = d for
identifiability. In order to have a fixed-vector length for each beat across all samples, we fix d so that
parts of the beat between the preceding T and succeeding P wave are clipped.

The inferential goal is to recover �i for each ECG sample from a dataset of observed ECGs, fXi;bgi;b.
The simplest approach is to average the aligned beats — this is standard practice to remove beat-
to-beat variability during exercise stress tests [4]. On the other end of the spectrum, a nonlinear
latent variable model (e.g., a variational autoencoder) can learn complex global structure to denoise
individual ECG samples, but can require large datasets and be difficult to train.

We propose an estimator in between these two extremes — a two-step approach that first estimates
the covariance structure of the global noise K and per-ECG amplitudes �i, and then applies factor
analysis to a rotation of the observed data. To estimate K, we pool information across all observed
beats; to estimate the noise amplitude of �i we leverage the multiple observed beats within each
recording i. Given an estimate of K and �i, we transform each observation Xi;b so that stochastic
variation has (approximately) diagonal structure, suitable for standard factor analysis. The resulting
factor analysis estimate is un-transformed to produce the de-noised ECG beat estimate. Further
details of this estimator are in Appendix B.3.

In addition to the average beat and VAE, we evaluate the performance of the oracle Bayes estimator
[3], an idealized (and impractical) estimator that serves as an upper bound on estimation performance.
We also evaluate a mixture of factor analyzers model that extends the two-step factor analysis
estimator with a flexible learned prior. All estimators are described in detail in Appendix B.

4 Experiments

The denoising methods were run on two datasets: (1) Simulated data where a known ground truth
and known noise structure exists and (2) ECGs from a large study where no ground truth data exists.
This setup allows us to analyze the statistical properties of the methods in a controlled simulated
setting and then study properties of the real data. In the simulated setting, we compare the different
estimators using the mean squared error of the estimated beat to the ground truth — this metric
averages over the estimator’s ability to reconstruct the amplitude and morphology of the ECG beat.

4.1 Simulated Data

The simulated dataset is generated by solving the initial value problem of the following coupled
ODE model proposed in [8] as detailed in Appendix C. To induce variation in the denoised ECG
typically present in real data due to factors such as subject-level physiology or environmental factors,
the original parameters in the ECG are jittered and randomly sampled resulting in variation in ECG
beats as shown in Figure 2.

We apply the methods described above to the realistic case of B = 20 and �i � Unif(2; 20) for
ground-truth and estimated values of K and � . The noise covariance K is chosen based on that
induced by a Matérn covariance kernel with observations at frequency 500 Hz. The oracle Bayes
approach is the best case performance we can expect, and we compare our factor analysis-based
approaches (linear, post-hoc corrected, and nonlinear) against the standard MLE baseline as shown
in Figure 2. The latent space dimension and other hyperparameters for the linear methods were
tuned based on the Scree plot where eigenvalues which decayed with a slope of larger than �0:8 was
chosen as the cutoff. The latent dimension was fixed to 20 for the VAE.
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